0%

最小生成树

最小生成树

prim

稀疏图,采用邻接矩阵进行存储边之间的关系

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
// prim 算法求最小生成树 

#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>

#define INF 0x3f3f3f3f

using namespace std;

const int maxn = 505;

int a[maxn][maxn];

int vis[maxn],dist[maxn];

int n,m;

int u,v,w;

long long sum = 0;

int prim(int pos) {
dist[pos] = 0;
// 一共有 n 个点,就需要 遍历 n 次,每次寻找一个权值最小的点,记录其下标
for(int i = 1; i <= n; i ++) {
int cur = -1;
for(int j = 1; j <= n; j ++) {
if(!vis[j] && (cur == -1 || dist[j] < dist[cur])) {
cur = j;
}
}
// 这里需要提前终止
if(dist[cur] >= INF) return INF;
sum += dist[cur];
vis[cur] = 1;
for(int k = 1; k <= n; k ++) {
// 只更新还没有找到的最小权值
if(!vis[k]) dist[k] = min(dist[k],a[cur][k]);
}
}
return sum;
}

int main(void) {
scanf("%d%d",&n,&m);
memset(a,0x3f,sizeof(a));
memset(dist,0x3f,sizeof(dist));
for(int i = 1; i <= m; i ++) {
scanf("%d%d%d",&u,&v,&w);
a[u][v] = min(a[u][v],w);
a[v][u] = min(a[v][u],w);
}
int value = prim(1);
if(value >= INF) puts("impossible");
else printf("%lld\n",sum);
return 0;
}

kruskal

稠密图,采用邻接表进行存储边之间的关系

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
// Kruskal 算法求最小生成树 

#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 2e5 + 10;

struct node {
int x,y,z;
}edge[maxn];

bool cmp(node a,node b) {
return a.z < b.z;
}

int fa[maxn];

int n,m;

int u,v,w;

long long sum;

int get(int x) {
return x == fa[x] ? x : fa[x] = get(fa[x]);
}

int main(void) {
scanf("%d%d",&n,&m);
for(int i = 1; i <= m; i ++) {
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].z);
}
for(int i = 0; i <= n; i ++) {
fa[i] = i;
}
sort(edge + 1,edge + 1 + m,cmp);
// 每次加入一条最短的边
for(int i = 1; i <= m; i ++) {
int x = get(edge[i].x);
int y = get(edge[i].y);
if(x == y) continue;
fa[y] = x;
sum += edge[i].z;
}
int ans = 0;
for(int i = 1; i <= n; i ++) {
if(i == fa[i]) ans ++;
}
if(ans > 1) puts("impossible");
else printf("%lld\n",sum);
return 0;
}